Romain


English/General

Lonely leaders

Posted by Romain on

« The one trait all great leaders share in common is the fact that they do not wait for others to follow them. » from Nicolas Cole on Medium. I feel the quote and even like its negativity. He doesn’t write « go without others » but « not wait for others ». As if the leader would seek for loneliness. Indeed, the feature characterizes democracies. If someone wants to do something unique in such a society, they will do this thing alone because convincing a crowd of a new idea is next to impossible.

Democracy favors the following statements : « Everybody thought (put here something you like) », « We need to be pragmatic and do (put here something you like people to do) ». They pop-up in the smallest « democratic » movement because they help to convince the crowd. If everybody think this way then we should do this thing. These kind of statements easily crumble in a head-to-head discussion. In such a dialog the fallacy becomes evident: a lot of people sharing the same idea does not make it true. When you address a mob these arguments convince the most because they divide and conquer. And a person with a different idea feels isolated.

Two ways of achieving loneliness. To be on an island or to express a different idea. Romain Cazé CC-BY

A stochocratic society might behave differently. We give the loudspeaker to everybody and a person does not need to incarnate or represent the majority in a stochocracy. The person has no intrinsic legitimacy and the need to convince the mob disappears. We often criticize democratic leaders because they fail to represent us. Maybe they do represent something, the majority, but not individuals because it’s impossible. An individual with an original idea might feel less alone in a stochocratic regime where people listen to them without requiring a pre-existing legitimacy.

Thank you for reading! If you know some lonely leaders please comment.

English/General

Democracy

Posted by Romain on

Representative, direct or participative who wants some TRUE Democracy? I here venture to a critic.

Democracy’s positive connotation explains its widespread use. A democrat defends the most widespread values. These values seems, at a given time, noble and obvious. But I know an old and famous value: women’s intelligence undershoots men’s.

Democracy comes  from the greek word demos: « the people ». A democratic state places, in theory, power in people’s hand.  People like to shout that this is false in practise for our democracies, they say that we live in an oligarchy where power remains in the richest hands. I agree. So they nobly fight to restore true democracy, to give back power to the people because the majority thinks well and clearly. Take for instance the death penalty. I hope to never see a referendum on this question, in France the government stopped death penalty without consulting the people. And I welcome this authoritarian move.

Remember also that Hitler took power democratically. Like so many obnoxious people who have pretended to be great democrats, sometime they were even liked by a majority. Democracy stays a positively connoted word even if it produced the worst things in our century. Still Churchill said:  » Democracy is the worst form of Government except for all those other forms that have been tried from time to time ». Many of Churchill’s moves may not have been considered democratic.

We saw progresses in Mathematics and Physics and Biology. Can’t we imagine progresses in how we do politics?

Two historical figures of democracy. Romain Caze CC-BY

Stochocracy comes from a greek word meaning randomness. I like sortition not because of its representative feature making it a democratic tool. I love it because: « power corrupts and absolute power corrupts absolutely » and sortition allows for a plasticity impossible in elections. Yet I agree with Churchill’s comment and we should implement this novelty cautiously and step by step.

Thank you for reading! If you want to courageously defend democracy

English/General

Figurehead

Posted by Romain on

Humans want leaders and we have a tendency to herd behaviour. This may seem to contradict using the chance. One could think it seeks to get rid of leaders. I argue here twofold against this idea. First, certain figureheads have little political power while some influential leaders remain discreet. Second, sortition enables to generate new and true representative leaders from the raw population.

The Queen of England has very little political power while being a representative figurehead. On the one hand, she focused the public eye while politicians rule less loudly. On the other hand, a country can prosper without a popular political leader and Switzerland exemplifies this position.  Yet even in a small group of people, it is possible to observe an instantaneous hierarchy and some people will tend to speak or decide more than others.

Sortition creates representative and unexpected leaders. A loudmouth or a motivated individual can be a poor leader. An introvert can, however, be an excellent leader. A talent impossible to unravel without luck. Moreover, a sufficiently large sample can represent a group much more than elections. A sorted assembly has, therefore, an intrinsic representative power. Furthermore, sortition diminishes the pressure on as a leader can always resign without the associated disgrace. A leader is chosen by chance has no obligation to fulfil its position if they do not want to, or if they want to do it for a limited time.

Two figureheads. The queen of England and FM Sven Mikser met with the President of the Swiss Confederation Doris Leuthard in Tallinn. Romain Cazé CC-BY

Thank you for reading! If you have additional examples or counterexamples, describe them in the comment section below.

 

English/General/Tools

Mixing election and sortition

Posted by Romain on

A lucky few love to select using a dice, and some wonder: « how can sortition coexist with the existing elective system? ». Selecting using pure luck might be a daunting prospect if you want to replace elections, and we need to build a synergy between the two. I discuss here about two ways to use random selection combined with voting.

I want first to restate my firm opposition to volunteers’ list. Random selection enables to represent the population we sample from. The draw will select in this case only the people who wants power and like Alain wrote: « they are he worst kind to govern ». Moreover, it happens that the low number of volunteers renders sortition pointless. Therefore, I prefer a list like electoral register.

You can use sortition either before or after.

Demorun has employed it before to build its list of candidates. They used the electoral register to randomly select their potential nominees. They then go and visit them to make them sign a charter determining their task and under which rules they could be revoked – a 20% fraction of the voters needed after one year (if I remember correctly).

Two tools to select. Right, An American ballot box from 1880. Romain Cazé CC-BY

It is also possible to cast the dice after the vote. It validates sortition in this case. This completely depersonalize politics and weakens the elected politicians who now need to listen carefully to voters if they don’t want to be revoked. This usage seems more suited for « smaller » type of elections with less stakes. The sample remains small in this case, one could then use the lists of all members from a cooperative, party or union.

In conclusion, the decision to pick before or after the vote depends on many factors. The use before the vote enables to inject momentum in the campaign and fit well with a municipal or regional scale. Using chance after the vote can rapidly create a union or a cooperative executive board. Notably, the following or preceding elections are mandatory in Non Governmental Organization because national laws often enforce the executive board’s members election.

Thank you for reading! As usual I welcome comments.

Français/Outils

Désigner une personne en utilisant un dé (ou deux)

Posted by Romain on

Nous utilisons un seul dé (ou une seule pièce) dans la version actuelle de la méthode pour sélectionner aléatoirement une personne qui modère. J’utilise cette méthode pour deux raisons. Tout d’abord, la méthode est facile: tout le monde a une pièce de monnaie et lors d’un jour de chance, une personne a un dé. Deuxièmement, la méthode se trouve à mi-chemin entre une liste de volontaires et une liste qui comprend tout le monde, puisque les (non-)volontaires peuvent s’asseoir à proximité ou loin du lanceur de pièces/dés. La méthode peut être facilement expliquée et elle a bien marché lors de mes précédentes expériences.

Mais, j’ai récemment pensé à une autre méthode (voir un ancien post). J’ai appelé cette deuxième méthode la méthode de la dichotomie. La méthode consiste à diviser le groupe principal en sous-groupes. Par exemple, un groupe de taille pair peut être divisé en deux, nous choisissons le premier sous-groupe pour pile et l’autre pour face. Vous pouvez ensuite recommencer le processus jusqu’ à ce qu’une personne soit sélectionnée. Un dé permet de traiter le cas des groupes divisibles en deux ou trois sous-groupes. Vous êtes confronté à un problème insoluble avec des groupes de taille de nombres premiers car vous devez avoir des sous-groupes non chevauchants et égaux pour garantir que toutes les personnes pourraient être sélectionnées avec la même probabilité.

Dans ce post je présente une troisième méthode appelée la méthode du dénombrement. Cette méthode fonctionne dans un groupe de moins de 36 personnes. Quelqu’un jette deux dés (ou un seul dé deux fois), de couleurs différentes, l’un représentant l’unité et l’autre les dizaines (voir illustration ci-dessous énumérant toutes les possibilités). On commence à compter à partir du lanceur (11 est le lanceur puis 12 à 65,66). S’il y a moins de 36 personnes, vous pouvez relancer quand vous obtenez un jet plus grand que la taille du groupe. Le groupe peut aussi contenir 9 ou 18 personnes, ici une personne correspond respectivement à trois ou deux lancers distincts possibles.

A gauche les nombres premiers jusqu’ à 2500. A droite, tous les tirages possibles (36) avec deux dés. Romain Cazé CC-BY

Pour la plupart des situations, un seul dé couvre déjà nos besoins. Les groupes de 6 personnes sont assez grands pour une discussion animée. Un groupe de plus de 36 personnes devient rapidement ingérable.

Merci de votre lecture! Si vous avez d’autres méthodes ou si vous pensez que nous ne devrions faire appel qu’ à des bénévoles, commentez.

P.S.Merci Ambre pour la relecture.

Uncategorized

Organizing an event with a limited number of seats

Posted by Romain on

I talked about the France Insoumise convention in a previous post. They randomly selected the participants from a list of volunteers. They used a script available on github. Yet most of the questions I asked to the developer stayed unanswered. Also they did not advertise this event. Were they wary of stacking? Anyway they manage to put in place a first test for the use of sortition to organise a meeting. A malicious agent could have rigged the experiment by drawing with different seeds until they obtained the desired result.

Computers are fully deterministic and use pseudo-random numbers. To generate « random » numbers one uses sequences from which it is difficult to predict the next outcome knowing the previous. These sequences, however, are entirely deterministic as the next element is computed from the previous in a predictable manner. For a given seed  -initial condition- all computers can reproduce the entire sequence. The computer’s determinism constitutes both a weakness and also a strength.

 

Two lines, nobody like queueing except maybe for the monks. Romain Cazé CC-BY

A way to avoid possible tampering consists in randomly drawing a seed. For instance, we can do it by taking the arrival times of different witnesses and hashing these numbers. We can also use an entirely analogical device to draw a seed controlled by an usher. Any computer could then deterministically reproduce the outcome. Two advantages here: (1) it saves a lot of time, especially if we need to pick within a long list of people (2) everybody can reproduce the draw using a personal computer.

The aforementioned method would give a strong legitimacy to the draw. And rigging the draw would become virtually impossible.

Thank you for reading! If you have ideas on how to use this method please comment in the section below.

P.S: Thank you Ambre for the proof read.

English/Tools

Selecting a person from the crowd with a dice (or two).

Posted by Romain on

We use a single dice (or coin) in the current version of the method to randomly select a moderator. I employ the latter method for two reasons. Firstly,  the method is easily and practically feasible: everyone has a coin and on a lucky day one person has a dice. Secondly, the method stands midway between a list made of volunteers and an all inclusive list, since the (non-)volunteers can go sit either near or far from the coin/dice caster. The method can be easily explained and worked nicely during my previous experiments.

But, I recently thought about another method (see a former post). I called this second method the dichotomy method. The method consists in dividing the main group into subgroups. For instance, an even sized group can be divided in two, we pick the first for heads and the second for tails. You can then reiterate the process until we sort a single person. A dice enables to deal with situation for groups dividable in two or three subgroups. You face an unsolvable problem with prime numbers-sized groups as you need to have non-overlapping and equal subgroups  to guarantee that all people could be selected with the same probability.

I want in this post to introduce a third method called the enumeration method. This method works in a group with less than 36 people.  Someone casts two dices (or on die twice), of different colours one representing the unit and the other the tens (see illustration below enumerating all possibilities). We start counting from the caster (11 is the thrower then 12 up to 65, 66). If there are less than 36 people you can re-throw when you obtain a throw larger than the group size. The group might also contain 9 or 18 people, here a person respectively corresponds to three or two possible distinct throws.

One the left the prime numbers up to 2500. On the right, all the possible draws (36) with two dice. Romain Cazé CC-BY

For most situations a single dice already covers our needs. Groups of 6 are large enough for a lively discussion. A group larger than 36 becomes rapidly unmanageable.

Thank you for reading! If you have any other methods or suggestions or if you think we should only peak volunteers please comment below.

P.S.: thank you Ambre for the proof-reading.

Français/General

Debut et pas fin

Posted by Romain on
Je retrace ici mon parcours depuis mars 2016 sur mon intérêt pour le rôle de l’aléatoire en politique. Cette date n’est pas un hasard, mars 2016 c’est le début de Nuit Debout. Je vivais à l’époque dans un appartement à 2 minutes à pied de la place de la République.
Au début je venais par curiosité, quand il y a eu les premières tentes, je suis venu plus régulièrement, et ensuite tous les jours. Très vite je me suis intéressé au rôle que pouvait jouer le bruit en politique. La première réalisation concrète de cette idée a été le jeu de la stochocratie.
 
Deux images du soleil. Un spectacle qui recommence chaque jour. Romain Cazé CC-BY
J’ai pratiqué cette expérience une bonne quinzaine de fois, sur la place de la République, avec des amis ou de la famille (eh oui je suis têtu). Le jeu a évolué beaucoup de fois par la même occasion (voir l’historique de la page wiki, une longue histoire), et continue encore de changer (voir blog).
 
Bref je m’intéresse donc de près à cette question depuis un certain temps. J’ai eu l’occasion de pointer mon nez à #MAVOIX. Je suis aujourd’hui en contact avec pas mal de gens dont les kleroterians ou Pierre, l’initiateur de demorun, mais aussi Brett de la sortition foundation. Je commence aussi à connaître les gens des listes participatives parisiennes auxquelles je propose de tirer au sort les personnes qui modèrent nos réunions. Une aventure donc qui continue!
Merci pour votre lecture! N’hésitez pas à commenter.
Français/General

Mérite

Posted by Romain on

Je vous conseille de regarder cette vidéo en anglais -surtout la leçon trois- avant de lire ce post ou d’écouter cette chanson en français pendant la lecture de ce post. La méritocratie suppose que les gens obtiennent ce pour quoi ils ont œuvré. Tous les jours, des personnes se noient, tuent ou sont tuées, grandissent dans des endroits dangereusement proches de l’enfer ou étrangement proches du paradis. Est-ce qu’ils le méritent? Ma nounou est morte en me tenant la main sur le chemin du retour de l’école; je suis entourée d’une grande famille que j’aime; j’ai perdu mon père à l’âge de six ans; j’ai grandi dans une France riche; j’ai eu mon doctorat avec les félicitations du jury; j’ai la sclérose en plaques. Est-ce que je le mérite? La réponse à ces deux questions me semble évidente. Non. Pourtant, les idées méritocratiques infestent nos sociétés. C’est peut-être parce qu’un oui rendrait les choses tellement plus faciles. En effet, il est réconfortant de trouver un but à tout cela ou un grand dessein qui explique les sacrifices.

Lors de ma courte vie, j’ai appris à respecter non pas les buts, mais les moyens. C’est la seule chose que j’arrive à contrôler. Se concentrer sérieusement sur quelque chose ou partager avec les autres mes moments faciles ou difficiles. Être bienveillant avec moi-même et avec les autres et profiter de mes chances incroyable. J’ai aussi appris à mieux percevoir les événements. Des choses, bonnes ou mauvaises, nous arrivent – aucun contrôle la dessus – mais la façon dont nous percevons les choses peut se contrôler. Se blâmer ou blâmer les autres pour leurs erreurs gaspille du temps et de l’énergie, et tous les deux sont nécessaires pour saisir les opportunités et profiter des bons moments.

Deux médailles, à gauche la légion du mérite, à droite une médaille plus modeste. Crédit d’image Romain Cazé CC-BY

Quel lien avec la sortition? Le choix n’existe pas lorsque la méritocratie encombre notre jugement. Les décisions sont alors influencées par nos innombrables biais inconscients, on partage alors selon son humeur. Mais le choix de tirer à pile ou face est un acte conscient. C’est une façon bien plus juste de partager que la méritocratie. Il n’ y a personne qui mérite plus que les autres de posséder des choses ou de décider. La sortition sert un moyen et non un but, elle permet de partager et de diriger avec beaucoup plus d’impartialité. Car il devient consciemment impossible de penser que les gens méritent de posséder ou de diriger lorsque le sort est aux commandes.

Merci de votre lecture! Vos commentaires et réactions sont bienvenues, alors n’hésitez pas à laisser un commentaire dans la section ci-dessous.

 

English/Tools

Selecting a person from a crowd with a coin

Posted by Romain on

The first argument against sortition is how do we draw a name in a group larger than six (do we use a special dice?). This practical problem has multiple solutions. I’ll describe here two of them using a coin:

The first solution consists in having a limited list based on a arbitrary criteria. For instance to select the first:head or the second:tails person on the left of the thrower. You can make the power turns by the rotation of the moderator’s duty, e.g. using thumbs up to restart a designation.

This solution seems convenient. It can easily be done and has a minimal practical requirement: a coin. It has, however, a big disadvantage: if you want a moderator for a long period of time, you limit yourself to a tiny list of people; this put a bias as the thrower determines this tiny list of people, you can then ask: how do we choose the thrower?

Two incarnation of combinatorics power: selection of 3 among 5 and grain of sands. Image credit Romain Cazé CC-BY

A second solution consists in using a coin to split the group into subgroups and to do multiple coin flips. The thrower would be the only person that could not be elected in this case (good to protect against conflict of interest). The procedure is as following: one divides the group in two, if the number of people is even no problem; if it is odd a single person will belong to both groups and will be in the next phase whatever the result. This last measure guarantees that everyone has exactly the same chance to be selected. Subgroups of different sizes would make some people more prone to be selected. For example with three people you cannot make a subgroup of two and a subgroup of one, the person in the second group would be selected after a single throw. Repeating coin flips enables to divide more and more until one person is selected. This method yields a selected person rapidly and enables to select a person in a group of size two power n with n+1 throws.

Thank you for reading! If it is not clear and you have questions or if you think of another practical way please comment.

P.S: This post contains a mistake. There is no way to use « the dichotomy method » presented here and to keep the equiprobability property. The subgroup needs to be of equal size AND disjoint for the method to work. It means that for groups that cannot be divided in two this method is not working. But I do not give up! More in a following post.